Working memory capacity of biological movements predicts empathy traits

Citation:

Gao, Z., Ye, T., Shen, M., & Perry, A. . (2016). Working memory capacity of biological movements predicts empathy traits. Psychonomic Bulletin & Review, 23, 468-475. Retrieved from https://link.springer.com/article/10.3758/s13423-015-0896-2

Abstract:

Working memory (WM) and empathy are core issues in cognitive and social science, respectively. However, no study so far has explored the relationship between these two constructs. Considering that empathy takes place based on the others’ observed experiences, which requires extracting the observed dynamic scene into WM and forming a coherent representation, we hypothesized that a sub-type of WM capacity, i.e., WM for biological movements (BM), should predict one’s empathy level. Therefore, WM capacity was measured for three distinct types of stimuli in a change detection task: BM of human beings (BM; Experiment 1), movements of rectangles (Experiment 2), and static colors (Experiment 3). The first two stimuli were dynamic and shared one WM buffer which differed from the WM buffer for colors; yet only the BM conveyed social information. We found that BM-WM capacity was positively correlated with both cognitive and emotional empathy, with no such correlations for WM capacity of movements of rectangles or of colors. Thus, the current study is the first to provide evidence linking a specific buffer of WM and empathy, and highlights the necessity for considering different WM capacities in future social and clinical research.

Website